当前位置:首页 > 心得体会 > 正文
 

厦门市2019届高中毕业班第一次【2019厦门市初中毕业班教学质量检测数学试题】

发布时间:2019-05-16 00:17:10 影响了:

2019年图3 厦门市初中毕业班教学质量检测 数 学 (试卷满分:150分 考试时间:120分钟) 准考证号 姓名 座位号 注意事项:
1.全卷三大题,25小题,试卷共6页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B铅笔作图. 一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 图1 1.计算(-1)3,结果正确的是 A.-3 B.-1 C. 1 D . 3 2.如图1,在△ACB中,∠C=90°,则等于 A.sinA B. sinB C.tanA D . tanB 3.在平面直角坐标系中,若点A在第一象限,则点A关于原点的 中心对称点在 图2 A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若是有理数,则n的值可以是 A.-1 B.2.5 C. 8 D .9 5.如图2,AD,CE是△ABC的高,过点A作AF∥BC,则 下列线段的长可表示图中两条平行线之间的距离的是 A. AB B. AD C.CE D . AC 6.命题:直角三角形的一条直角边与以另一条直角边为直径的圆相切.符合该命题的图形是 A. B. C. D . 7.若方程(x-m)( x-a)=0(m≠0)的根是x1=x2=m,则下列结论正确的是 A. a=m且a是该方程的根 B. a=0且a是该方程的根 C. a=m但a不是该方程的根 D. a=0但a不是该方程的根 8.一个不透明盒子里装有a只白球、b只黑球、c只红球,这些球仅颜色不同.从中随机摸出一只球,若 P(摸出白球)=,则下列结论正确的是 A.a=1 B.a=3 C.a=b=c D.a=(b+c) 9.已知菱形ABCD与线段AE,且AE与AB重合.现将线段AE绕点A逆时针旋转 180°,在旋转过程中,若不考虑点E与点B重合的情形,点E还有三次落在菱形ABCD的边上,设∠B=α,则下列结论正确的是 A. 0°<α<60° B. α=60° C. 60°<α<90° D.90°<α<180° 10.已知二次函数y=-3x2+2x+1的图象经过点A(a,y1),B(b,y2),C(c,y3),其中a,b,c均大于0.记点A,B,C到该二次函数的对称轴的距离分别为dA,dB,dC.若dA<<dB<dC,则下列结论正确的是 A.当a≤x≤b时,y随着x的增大而增大 B.当a≤x≤c时,y随着x的增大而增大 C.当b≤x≤c时,y随着x的增大而减小 D.当a≤x≤c时,y随着x的增大而减小 二、填空题(本大题有6小题,每小题4分,共24分) 11.计算:
-a+3a= . 12.不等式2x-3≥0的解集是 . 13.如图3,在平面直角坐标系中,若□ABCD的顶点A,B, C的坐标分别是(2,3),(1,-1),(7,-1),则点D的 坐标是 . 14. 某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金.该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为22,15,18(单位:万元).若想让一半左右的营业员都能达到月销售目标,则月销售额定为 万元较为合适. 图4 15.在平面直角坐标系xOy中,直线y=x与双曲线y= (k>0,x>0) 交于点A.过点A作AC⊥x轴于点C,过双曲线上另一点B作BD⊥x轴于点D,作BE⊥AC于点E,连接AB.若OD=3OC,则tan∠ABE= . 16.如图4,在矩形ABCD中,AB>BC,以点B为圆心,AB的长 为半径的圆分别交CD边于点M,交BC边的延长线于点E. 若DM=CE,的长为2π,则CE的长 . 三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程组 18.(本题满分8分) 如图5,已知点B,C,D,E在一条直线上,AB∥FC,AB=FC,BC=DE. 求证AD∥FE. 图5 19.(本题满分8分) 化简并求值:(-1) ÷,其中a=. 图6 20.(本题满分8分) 在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F. (1)尺规作图:在图6中求作点E,使得EF=EC;

(保留作图痕迹,不写作法) (2)在(1)的条件下,连接FC,求∠BCF的度数. 21.(本题满分8分) 某路段上有A,B两处相距近200m且未设红绿灯的斑马线.为使交通高峰期该路段车辆与行人的通行更有序,交通部门打算在汽车平均停留时间较长的一处斑马线上放置移动红绿灯. 图7,图8分别是交通高峰期来往车辆在A,B斑马线前停留时间的抽样统计图.根据统计图解决下列问题:
车辆数 图7 停留时间/s 0 2 4 6 8 10 12 10 12 12 8 7 1 图8 停留时间/s 0 2 4 6 8 10 车辆数 3 2 10 13 12 (1)若某日交通高峰期共有350辆车经过A斑马线,请估计该日停留时间为10s~12s的车辆数,以及这些停留时间为10s~12s的车辆的平均停留时间;
(直接写出答案) (2)移动红绿灯放置在哪一处斑马线上较为合适?请说明理由. 22.(本题满分10分) 如图9,已知△ABC及其外接圆,∠C=90°,AC=10. (1)若该圆的半径为5,求∠A的度数;

(2)点M在AB边上(AM>BM),连接CM并延长交该圆于点D,连接DB,过点C作CE垂直DB的延长线于E.若BE=3,CE=4,试判断AB与CD是否互相垂直,并说明理由. 图9 备用图 23.(本题满分10分) 在四边形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3. (1)如图10,求△BCD的面积;

图10 图11 (2)如图11,M是CD边上一点,将线段BM绕点B逆时针旋转60°,可得线段BN,过点N作NQ⊥BC,垂足为Q,设NQ=n,BQ=m,求n关于m的函数解析式.(自变量m的取值范围只需直接写出) 24.(本题满分12分) 某村启动“脱贫攻坚”项目,根据当地的地理条件,要在一座高为1000m的上种植一种经济作物.农业技术人员在种植前进行了主要相关因素的调查统计,结果 如下:
① 这座山的山脚下温度约为22°C,山高h(单位:m)每增加100m,温度T(单位:°C)下降约0.5°C;

② 该作物的种植成活率p受温度T影响,且在19°C时达到最大.大致如表一:
表一 温度T°C 21 20.5 20 19.5 19 18.5 18 17.5 种植成活率p 90% 92% 94% 96% 98% 96% 94% 92% ③ 该作物在这座山上的种植量w受山高h影响,大致如图12:
(1)求T关于h的函数解析式,并求T的最小值;

(2)若要求该作物种植成活率p不低于92%,根据上述统计结果,山高h为多少米时该作物的成活量最大?请说明理由. 25.(本题满分14分) 在平面直角坐标系xOy中,已知点A,对点A作如下变换:
第一步:作点A关于x轴的对称点A1;
第二步:以O为位似中心,作线段OA1 的位似图形OA2,且相似比=q,则称A2是点A的对称位似点. (1)若A (2,3),q=2,直接写出点A的对称位似点的坐标;

(2)已知直线l:y=kx-2,抛物线C:y=-x2+mx-2(m>0) .点 N(,2k-2)在直线l上. ① 当k=时,判断E (1,-1)是否是点N的对称位似点,请说明理由;

② 若直线l与抛物线C交于点M (x1,y1)( x1≠0),且点M不是抛物线的顶点, 则点M的对称位似点是否可能仍在抛物线C上?请说明理由. (本页为草稿纸)

相关热词搜索:厦门市 毕业班 质量检测 数学试题 初中

相关文章
最新文章

Copyright © 2008 - 2018 版权所有 101505资源网

工业和信息化部 湘ICP备14009742号-22